We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.
The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ...
Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.
Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.
ABSTRACT:
The detection, characterization, and sizing of seam anomalies continues to be a challenge for both in-line and in-the-ditch inspection technologies. This paper presents a testing program developed to evaluate the fatigue performance on a planar manufacturing defect removed from service in high frequency electric resistance welded (HF ERW) pipe. This defect was identified in the field by in-line inspection (ILI) and confirmed in the lab by phased array UT. In addition to the manufacturing flaw, several artificial flaws were sized and placed in the seam weld to evaluate the fatigue performance of the HF ERW seams. Fatigue was simulated in all flaws through a pressure cycle and surge test program based on the pipeline operational characteristics. At the conclusion of testing, a metallurgical evaluation analyzed the defect fatigue performance, and was compared to the original ILI and phased-array UT data. The metallurgical evaluation also characterized the fatigue growth and provided comparisons to analytical crack growth estimates. This work provides insight into the fatigue performance of early vintage HF ERW seams and comparisons between ILI and NDE sizing methods.
Denowh, C., Alexander, C.R., Schott, T., Chapman, B., “Fatigue Performance Characterization of a Manufacturing Seam Defect in High Frequency Electric Resistance Welded Pipe,” Proceedings of The 29th International Pipeline Pigging & Integrity Management Conference, Houston, TX, February 27 – March 2, 2017.
If you would like more information on Stress Engineering Services, please call us at 281.955.2900, or complete the following form and one of our representatives contact you shortly. For a complete listing of contact information, visit our Locations page.
"*" indicates required fields
Notifications