Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

High Temperature and Creep Assessments

Components such as heater tubes, steam and catalytic reformers, thin/thick wall reactors, and Fluid Catalytic Cracking Units (FCCU) can experience a combination of high temperature, stress, and long exposure that results in material degradation from the process referred to as creep.

High-temperature damage can be caused by numerous factors including:

  • Flame impingement
  • Aggressive operation (i.e., normal operation at high temperatures)
  • Coking
  • Long-term operation

At Stress Engineering Services, we advocate a comprehensive “cradle to grave” approach to life management of components in the creep environment. Our methodology utilizes a vital combination of creep life calculations, inspection, microscopic examination, measurement, predictive modeling, and testing.

Predictive Modeling
In many cases, such as new design or remediation of chronic operating issues, computer modeling of the flow and temperature properties is the only way to accurately address the thermal behavior of the system. We perform computational fluid dynamic (CFD) analysis of heaters to address issues such as heat transfer prediction, burner-to-burner interaction evaluation, flame impingement evaluation, improvements in flame shape and NOx performance.

High-Temperature Creep Testing
Our creep testing laboratory in Cincinnati, Ohio is equipped with 80 fully instrumented creep machines ranging in capacity from 500 lbs. up to 100,000 lbs. Engineering materials at test temperatures up to 2200°F can be accommodated. Capabilities include standard creep testing, special purpose creep tests using nonstandard specimens for collecting information on samples extracted from process equipment in service, and testing subcomponents such as weldments.

More on:  Creep Testing

Close

Contact Us

If you would like more information on Stress Engineering Services, please call us at 281.955.2900, or complete the following form and one of our representatives contact you shortly. For a complete listing of contact information, visit our Locations page.

"*" indicates required fields

This field is for validation purposes and should be left unchanged.